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We study theoretically the time-resolved four-wave mixing �FWM� response of an ensemble of pairs of
quantum dots undergoing radiative recombination. At short �picosecond� delay times, the response signal
shows beats that may be dominated by the subensemble of resonant pairs, which gives access to the informa-
tion on the interdot coupling. At longer delay times, the decay of the FWM signal is governed by two rates
which result from the collective interaction between the two dots and the radiation modes. The two rates
correspond to the subradiant and super-radiant components in the radiative decay. Coupling between the dots
enhances the collective effects and makes them observable even when the average energy mismatch between
the dots is relatively large.
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I. INTRODUCTION

Double quantum dots �DQDs� are pairs of quantum dots
�QDs� placed at a small distance from each other and
coupled either by long-range dipole forces1,2 or by carrier
tunneling through the interdot barrier3–5 �in the latter case,
the system is referred to as a quantum dot molecule�. Such
systems attract much attention both in the theoretical and
experimental researches. This still growing interest is driven
to a large extent by the technological promise these struc-
tures show for nanoelectronics and quantum information pro-
cessing applications. A system built of two QDs can be
viewed as a first step toward scalable semiconductor-based
quantum devices. Coupling between the dots is essential
here, as it allows one to induce conditional dynamics in the
system and thus to realize the basic elements of quantum
computing.6 Another interesting application of coupled QDs
is generation of entangled photons.7 It is therefore not sur-
prising that much experimental work has been devoted to
proving the existence of coupling in DQD systems.8–12

In this paper, we study the four-wave mixing �FWM� op-
tical response of an inhomogeneous ensemble of self-
assembled double quantum dots. The systems under consid-
eration are QD pairs formed spontaneously by strain-induced
nucleation, as is typical, e.g., in the InAs/GaAs system13,14

�although, in fact, the exact arrangement of the QDs is not
essential in our discussion�. The FWM spectroscopy is an
optical technique commonly used for extracting information
on lifetimes and homogeneous dephasing from inhomoge-
neous ensembles.15–17 It has been also applied to DQD
ensembles,18 showing features that are clearly distinct from
those observed in ensembles of individual QDs, such as two-
component decay and modified initial dephasing. As the
physical properties of DQDs are much more complex than
those of individual QDs it is not always possible to identify
the mechanism responsible for these differences. In particu-
lar, it is not clear to which extent they may result from
simple optical interference or quantum-optical mechanisms
of collective radiative decay �subradiance and super-
radiance�, as opposed, e.g., to DQD-specific phonon-related
dephasing channels, such as dissipative exciton transfer.19,20

Super-radiance has been thoroughly studied for strongly
excited atomic samples,21,22 where it is manifested as an out-

burst of radiation due to constructive interference of
quantum-mechanical amplitudes for radiative transition in a
massively correlated state of atoms interacting with a com-
mon radiation reservoir. Somewhat less spectacular form of
this effect was also observed in QD ensembles23 where the
radiative recombination was shown to increase for a suffi-
ciently large number of dots. However, the essential features
of the collective emission can be observed already in a two-
emitter system: states with a delocalized excitation decay
slower or faster, depending on the relative phase between the
two components in the superposition �the first or the second
emitter excited�.24,25

The goal of the present work is to identify the purely
optical effects that may appear in the nonlinear optical re-
sponse of an ensemble of DQDs. It has been pointed out that
the dynamics of double dots coupled to a radiative reservoir
is very reach, both in the open space24 and in a cavity.26

Here, we will show that the exponential decay of optical
coherence, characteristic of a single QD, is replaced by a
nonexponential, two-rate decay which may be related to sub-
radiant and super-radiant components in the system evolu-
tion. As in the previously studied case of a single pair of
nearly identical QDs,24 the decay is strongly affected by the
coupling between the dots. We show that the collective fea-
tures in the radiative decay persist even for relatively large
values of the energy mismatch between the dots �many or-
ders of magnitude larger than the emission linewidth� as long
as the coupling is of comparable magnitude. Another feature
that emerges from our model is a damped oscillatory behav-
ior of the FWM signal at short delays �subpicosecond and
picosecond time scales�, which results from the optical inter-
ference of the signals emitted by various DQDs in the en-
semble, dephased due to inhomogeneity of DQD parameters.
As we will show, these beats may be dominated by a rela-
tively long-living contribution from the minority suben-
semble of resonant DQDs �formed by dots with identical
transition energies�. In this way, the nonlinear response con-
tains information on the coupling between the dots, irrespec-
tive of the energy mismatch between them.

The paper is organized as follows: In Sec. II we present
the system under consideration and define its model. Next, in
Sec. III we discuss the evolution of the system under two-
pulse optical driving and derive the equations for the third-
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order optical polarization. The results are discussed in Sec.
IV. Section V contains concluding remarks.

II. SYSTEM

We study an ensemble of DQDs, each consisting of two
QDs. The QDs in each pair are placed at a distance much
smaller than the relevant photon wavelength so that spacial
dependence of the electromagnetic �EM� field may be ne-
glected �the Dicke limit�. We assume that the polarization of
the laser beam is chosen such that only one of the fundamen-
tal excitonic transitions in each dot is allowed. Each DQD
can be then modeled as a four-level system with the basis
states �0���00�, �1���01�, �2���10�, and �3���11�, corre-
sponding to the ground state �empty dots�, an exciton in the
second and first QD, and excitons in both QDs, respectively.
A single DQD is composed of two QDs with energies E1,2
=E��. We will describe its evolution in a frame rotating
with the frequency E /�. Then, in the rotating wave approxi-
mation, the Hamiltonian for a single DQD is

H = HX + HL + Hrad + Hphot.

The first component describes the excitons

HX = ��n̂1 − n̂2� + V��−
�1��+

�2� + �+
�1��−

�2�� + VBn̂1n̂2, �1�

where ��
�j� are creation and annihilation operators of an ex-

citon in the jth QD, n̂j =�+
�j��−

�j� is the occupation of the dot j,
V is the coupling between the dots �e.g., tunneling or
Förster�, and VB is a biexciton shift due to a static dipole
interaction.2

The second term in the Hamiltonian accounts for the in-
teraction with the laser field, which is treated classically,

HL =
1

2�
l

f l�t��e−i��l+Etl/����−
�1� + �−

�2�� + H.c.� , �2�

where f l, �l, and tl are the amplitude envelopes, phases, and
arrival times of the laser pulses, respectively.

The third term accounts for the interaction with the quan-
tized EM field �radiation reservoir� in the dipole approxima-
tion,

Hrad = ��−
�1� + �−

�2���
k,�

gk�ei��k−E/��tbk,�
† + H.c.,

where

gk� = id · ê��k�	 ��k

2�0�rv
,

k is a photon wave vector, �k is the corresponding frequency,
� denotes polarizations, bk,� and bk,�

† are photon creation and
annihilation operators, d is the interband dipole moment �for
simplicity equal for all QDs�, ê� �k� is a unit polarization
vector, �0 is the vacuum permittivity, �r is the dielectric con-
stant of the semiconductor, and v is the normalization vol-
ume for the EM modes.

Finally,

Hphot = �
k,�

��kbk,�
† bk,� �3�

is the Hamiltonian of the radiation reservoir.
To describe the ensemble of DQDs, we assume a Gauss-

ian distribution function for the energies of the two dots,

g�E1,E2� =
1

2	�2	1 − 
2
exp
−

�E1 − Ē1�2 − 2
�E1 − Ē1��E2 − Ē2� + �E2 − Ē2�2

2�1 − 
2��2 � �4�

with the mean transition energies Ē1 and Ē2, identical energy
variances �2 for both QDs, and a correlation coefficient 
.
Note that this distribution corresponds to an uncorrelated
Gaussian distribution of the parameters E and �, g�E ,��
=gE�E�g����, where

gA�A� =
1

	2	�A

exp
−
�A − Ā�2

2�A
2 �, A = E,� �5�

with the mean values Ē= �Ē1+ Ē2� /2 and �̄= �Ē1− Ē2� /2 and
variances �E

2 =�2�1+
� /2 and ��
2 =�2�1−
� /2 �correlation

between the QD energies E1 and E2 means less variance of
their difference�.

III. SYSTEM EVOLUTION AND FWM RESPONSE

A FWM experiment, which we want to model, consists in
exciting an ensemble of DQDs with two ultrashort laser

pulses, arriving at t1=−� and t2=0. The first step of the cal-
culation is to find the optical polarization of a single DQD
after the second pulse, which is proportional to

P�t� = 
10�t� + 
20�t� + 
31�t� + 
32�t� + c.c.,

where t�0, 
�t� is the density matrix of a DQD structure,
and 
kl= �k�
�l�. The first two terms are exciton coherences
�polarizations� while the other two are referred to as biexci-
ton polarizations. In order to extract the FWM polarization
we pick out only the terms containing the phase factor
ei�2�2−�1�, which mimics the frequency shifting and lock-in
detection technique used in the actual experiment.15,27 In the
second step, the total optical response from the sample is
obtained by summing up the contributions from individual
DQDs with the weight factor g�E ,��,
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PFWM�t� = d�dEg�E,��P�t� .

A. Single DQD evolution

The detection of weak signals originating from the DQD
ensemble is based on a heterodyne technique:15 the response
PFWM is superposed onto a reference pulse

Eref�t� = f ref�t − t0�e−iĒ�t−t0�/� + c.c.,

arriving at a time t0. We assume a Gaussian envelope

f ref�t� =
1

	2	�ref

exp
−
1

2
� t

�ref
�2� .

The measured signal is proportional to �F�t0 ,���, where

F�t0,�� = eiĒ�t0−��/� dtPFWM
�+� �t�Eref

�−��t� , �6�

where PFWM
�+� and Eref

�−� are the positive frequency part of the
FWM signal and the negative frequency part of the reference
pulse, respectively, and the �irrelevant� phase factor has been
extracted for convenience.

We assume that the pulses are spectrally very broad to
assure resonance with all the QDs in the ensemble. If the
durations of the pulses are much shorter than both � /� and
� /V, the action of each of them corresponds to an instanta-
neous, independent rotation of the state of each QD, that is,
to the unitary transformation Ul=Ul � Ul, where

Ul = cos�l

2
�I − i sin�l

2
��e−i��l+Etl/���0��1� + H.c.� .

Here I denotes the identity operator and

l =
1

�


−�

�

f l�t�dt

is the pulse area.
We assume that the initial state of a DQD is 
�−�−�

= �00��00� �t� denotes just after or before a time instant t�.
The DQD is then excited with the first pulse. Just after this
pulse, the system state is


�− �+� = U1
�− �−�U1
† �7�

and the four matrix elements related to optical polarizations
have the values


01�− �−� = 
02�− �−� =
i

2
sin 1 cos21

2
e−i�1+iE�/�,


13�− �−� = 
23�− �−� =
i

2
sin 1 sin21

2
e−i�1+iE�/�.

From now on, we will only keep the terms which are of the
first order in the first pulse area 1. In this approximation, the
biexciton coherences do not contribute at this stage of the
evolution.

Between the laser pulses, the evolution of the reduced
density matrix of the charge subsystem is described by the
Lindblad equation of the form24


̇ = −
i

�
�HX,
� + L�
� �8�

with

L�
� = �
�−
�+ −
1

2
��+�−,
�+� , �9�

where � is the spontaneous decay rate for an individual dot
and �−=�+

† =�−
�1�+�−

�2�. This yields a closed system of four
equations of motion for the negative frequency parts of
optical polarizations,


̇01 = �i�/� − �/2�
01 + �iV/� − �/2�
02 + ��
13 + 
23� ,

�10a�


̇02 = �iV/� − �/2�
01 − �i�/� + �/2�
02 + ��
13 + 
23� ,

�10b�


̇23 = �iVB/� + i�/� − 3�/2�
23 − �iV/� + �/2�
13,

�10c�


̇13 = − �iV/� + �/2�
23 + �iVB/� − i�/� − 3�/2�
13.

�10d�

The solution to these equations simplifies if one notes that
for typical double dots the energy mismatch is much larger
than the fundamental linewidth. Therefore, in the following
we assume ��� /�, where �= ��2+V2�1/2 corresponds to
the half splitting of the single-exciton states. This reflects the
actual experimental situation as the energy mismatch ob-
served in real samples ranges from a few meV to tens of
meV �Refs. 18, 28, and 29� while the recombination rate 1 /�
is typically on the order of 1 ns.18,29,30

Upon solving Eqs. �10a�–�10d�, one finds the exciton co-
herences at t=0−,


01�02��0−� =
i

4
sin 1 cos21

2
e−i�1+iE�/�

� 
�1 −
V � �

�
�e�0� + �1 +

V � �

�
�e�1��

�11�

with

�0�1� = � i
�

�
−

1

2
��� , �12�

where ��=1�V /� and the upper sign corresponds to the
first index or pair of indices.

The second pulse with an area 2 arrives at t=0. In order
to find the FWM response to the leading �third� order, we
need to calculate the positive frequency parts of optical po-
larizations, keeping only terms of the second order, contain-
ing the phase factor e2i�2. Such terms depend only on the
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values of the negative frequency polarizations before the
pulse and have the form


10�0+� = 
20�0+� =
e2i�2

4
sin2 2�
01�0−� + 
02�0−�� ,

�13a�


31�32��0+� = −
e2i�2

4
sin2 2
02�01��0−� . �13b�

Note that biexciton polarizations appear in the leading order
and cannot be eliminated since, contrary to the single dot
case, the transition to the molecular biexciton �excitons with
the same polarization confined in different dots� is not for-
bidden by selection rules for any polarization of the laser
beam.

The single-exciton polarizations at an arbitrary time t
�0 are found by using Eqs. �13a� and �13b� as initial values
for the system of equations of motion for positive frequency
polarizations, which is obtained from Eqs. �10a�–�10d� by
complex conjugation. The total single-exciton polarization is
P�1��t�=
10�t�+
20�t� and is explicitly given by

P�1��t� =
i

8
sin 1 cos21

2
sin2 2ei�2�2−�1�eiE�/�

� ��−e�0
�t + �+e�1

�t���−e�0� + �+e�1�� . �14�

Although, in principle, the biexciton term affects the exciton
coherences in the same order of the optical response �due to
radiative recombination� one finds that the corresponding
terms are on the order of �� /��1 and can be neglected.

For the biexciton polarizations, the evolution Eqs.
�10a�–�10d� yield


31�32� =
1

2

�1 �

�

�
�
31�32��0+� +

V

�

32�31��0+��e�2

�t

+
1

2

�1 �

�

�
�
31�32��0+� −

V

�

32�31��0+��e�3

�t,

where

�2�3� = � i�/� + iVB/� − �1 +
1

2
���� . �15�

The biexciton contribution to the coherent polarization is
then

P�2��t� = 
31 + 
32

=
i

8
sin 1 cos21

2
sin2 2ei�2�2−�1�eiE�/�

� ��+e�2
�t+�1� + �−e�3

�t+�0�� . �16�

B. Ensemble response

The FWM polarization is obtained upon returning to the
Schrödinger picture, which amounts to inserting the phase
factor e−iEt/� and adding up the contributions from all the
dots in the ensemble according to their statistical distribution

given by Eqs. �4� and �5�. For the sake of the further discus-
sion it is convenient to split the exciton contribution �Eq.
�14�� into two parts and to write the total polarization as a
sum of three contributions

PFWM�t� =
i

8
sin�1�cos2�1

2
�sin2�2�e−���+t�/2

� d�dEg�E,��e−iE�t−��/��
n=1

3

Pn�t,�� + c.c.

=
i

8
sin�1�cos2�1

2
�sin2�2�

� e−�E
2 �t − ��2/2−iĒ�t−��/�−��t+��/2

� d�g�����
n=1

3

Pn�t,�� + c.c., �17�

where we inserted definitions �12� and �15� into Eqs. �14�
and �16� and defined

Pn�t,�� = Pn+�t,�� + Pn−�t,�� ,

P1��t,�� = ��
2 exp
�

V�

2�
�� + t� � i��� − t�/�� ,

P2��t,�� = ���− exp
�
V�

2�
�� − t� � i��� + t�/�� ,

P3��t,�� = − �� exp
− �� + iVB/��t � �V�

2�
− i�/��

��� + t�� .

The second form of Eq. �17� is obtained by performing the
integration over E.

Next, one has to calculate the heterodyne signal generated
by the FWM polarization overlapped with the reference sig-
nal, according to Eq. �6�. The integration over time in Eq. �6�
can easily be performed. Substituting Eq. �17� into Eq. �6�
and performing some reasonable approximations, as dis-
cussed in detail in the Appendix, one finds

F�t0,�� = �
n=1

3

Fn�t0,�� ,

where

Fn�t0,�� =
i

8
sin�1�cos2�1

2
�sin2�2�

� d�g�����Fn+��� + Fn−���� . �18�

Here
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Fn���� = eiĒ�t0−��/� dtPn�
�+��t,��Eref

�−��t�

=
1

4	1 + �ref
2 �E

2 /�2
exp
−

�E
2�t0 − ��2

2��2 + �ref
2 �E

2��
� exp
�i

��t0 − ��
��� + �ref

2 �E
2 /����n���� , �19�

where

�1���� = ��
2 exp
−

�2�ref
2

2��2 + �ref
2 �E

2��exp�− ����� ,

�20a�

�2���� = �+�− exp
−
�2�ref

2

2��2 + �ref
2 �E

2��
� exp��2i��/��exp�− ��� , �20b�

�3���� = − �� exp
−
�� � VB�2�ref

2

2��2 + �ref
2 �E

2��
� exp
− i�VB � 2���/� −

iVB�t0 − ��
�� + �ref

2 �E
2 /���

� exp�− �1 + ������ . �20c�

In order to calculate the time-resolved nonlinear response
of the DQD ensemble, Eq. �19� must be integrated numeri-
cally with the distribution function g����, according to Eq.
�18�. Another integration, over t0, yields the time-integrated
�TI� FWM signal as a function of the delay time �, which is
commonly used to characterize the dephasing in a physical
system. The results will be discussed in the following
section.

IV. RESULTS

In this section we present and discuss the time-resolved
and time-integrated FWM response from an ensemble of
double quantum dots, depending on the statistical distribu-
tion of the energy mismatch between the dots in the en-
semble and on the strength of the coupling between the dots.

We assume fixed values of the average energy mismatch �̄
=4 meV, the standard deviation of the mean DQD transition
energy �E=8 meV, the length of the reference pulse �ref
=21 fs �corresponding to 50 fs full width at half maximum�,
and the spontaneous recombination rate for an individual dot
�=1 ns−1. We start by studying the nonlinear response for
short �picosecond� delays; then we proceed to the discussion
of the signal decay on long �nanosecond� time scales.

A. FWM response for short-delay times

It follows from Eq. �19� that all the contributions to the
FWM signal are restricted to the short range of delay times
around t0=�, of width �� /�E, that is, they have the form of
a photon echo. However, among the three contributions Fn

�Eq. �18��, the first one, F1, has a different character than the
other two. This results from the different structure of the
phase factors of the form ei��/� appearing in the last expo-
nential term of Eq. �19�, in the second exponential term of
Eq. �20b�, and in the second exponential term of Eq. �20c�.
Since � depends on �, which varies across the ensemble,
such terms tend to interfere destructively when the signal
from different DQDs is added up. However, in the case of
F1, this phase term depends only on t0−�, which is limited to
the width � /�E of the echo pulse. Therefore, the spread of
the phase factors is also limited and independent of �. The
only effect of this phase term is therefore a slight asymmetry
of the echo pulse due to oscillations in Im F1, as shown in
Figs. 1�a� and 1�e� �which makes it different from the simple
pulse shape from an ensemble of individual dots�. These os-
cillations are always in phase with the center of the echo
peak so that the peak area �that is, the time-integrated signal�
is constant.

The situation is different in the case of the other two
contributions F2 and F3. Here, another phase term appears,
proportional to �� /� or �VB�2��� /� �in the second expo-
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FIG. 1. �Color online� ��a�–�c�� Real and imaginary parts �green
dashed and blue dotted lines, respectively� of the three contributions
Fn�t0 ,�� to the FWM echo F�t0 ,�� �Eqs. �18� and �20c�� for short
delays, with �=0.23 ps, V=2 meV, VB=1 meV, and ��=1 meV.
��e�–�g�� As previously but at �=0.61 ps. ��d� and �h�� Real and
imaginary parts of the total signal F�t0 ,��, as well as its modulus,
which corresponds to the measured signal, for the two values of �.
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nential terms of Eqs. �20b� and �20c��. Thus, the phase of the
signal at t0=� varies with �, which leads to a variation in the
shape and magnitude of the echo. As can be seen by com-
paring Figs. 1�b� and 1�c� with Figs. 1�f� and 1�g�, the con-
tribution of these terms to the photon echo strongly depends
on the delay �. As a result, also the amplitude of the total
�actually measured� signal varies with time on picosecond
time scales, as shown in Figs. 1�d� and 1�h�. This variation
leads to oscillations in the TI signal �Fig. 2�. These oscilla-
tions are a manifestation of optical beats between the two
dots. Their form depends on whether the ensemble contains a
fraction of DQDs composed of identical �resonant� dots, that

is, on the interplay of �� and �̄.

If ����̄ then the signal originates from all the DQDs,
whose values of the energy mismatch � lie roughly within

�� from �̄. The inhomogeneity of the values of � translates
into inhomogeneity of � and leads to a spread of phases in
the terms like exp�i�� /��, which increases as � increases.
Since the total signal from the sample is a coherent sum of
the fields emitted by all DQDs, this phase distribution leads
to quenching of the two contributions F2 and F3 at �
��� / ������1 /� and, therefore, to vanishing of the oscil-
lations. This can be clearly seen in Figs. 2�a� and 2�c�. This
effect is due to the fact that the probe pulse acts symmetri-
cally on both dots and, therefore, can invert �refocus� only
the dephasing due to the inhomogeneous distribution of the
average transition energies but not that resulting from the
inhomogeneity of the energy mismatch between the dots in a
single pair.

The evolution of the optical signal becomes more inter-

esting if ����̄. This condition means that the ensemble
contains a fraction of resonant DQDs, that is, such that have

nearly identical transition energies. The frequency � has a
minimum at �=0 which corresponds to a stationary point of
the phase distribution over the ensemble. Therefore, all the
nearly resonant QDs emit radiation in phase and can domi-
nate the contributions F2 and F3 of the ensemble when the
signal from the possibly much more numerous dots with �

� �̄ has dephased as described above. An essential point is
that since this minority resonant subensemble has ��0, the
frequency of the beats is very close to 2V /� or �2V−VB� /�
�note that the term with this frequency has a much larger
amplitude in Eq. �20c� than that with the frequency �2V
+VB� /� since for �→0 one has �−→0�. In this way, the
nonlinear response gives a direct access to the values of the
interdot couplings and to the properties of resonant dots,
even if they are a minority in the ensemble. The beats origi-
nating from the resonant subensemble show slower damping
than those from the majority DQDs but still they vanish on
the time scales of several picoseconds.

B. FWM response for long delays

For longer delays, only F1 contributes to the signal. Out
of the two components making up this term, F1+ has the
decay rate �+=�+���. This is the super-radiant component
of the optical coherence, the decay rate of which reaches 2�
when V��. The other, subradiant component F1− has the
decay rate �−=�−���, which vanishes in the limit of
strongly coupled dots. The relative amplitude of these two
components is �+ /�− so that the super-radiant one dominates
if the coupling is strong with a subradiant tail visible only at
long delays.

The decay of the FWM signal at long delay times is
shown in Fig. 3�a� for different strengths of coupling be-
tween the dots. For V=0, both decay rates are equal to � and
one observes a usual exponential decay. As the coupling in-
creases, the decay of the FWM response becomes nonexpo-
nential due to the presence of the subradiant and super-
radiant components. For V��, the decay sets off with an
intermediate rate between � and 2� but it deviates from an
exponential form rather quickly. When V�� the FWM re-
sponse is almost completely dominated by the super-radiant
component, showing an exponential decay with the rate 2�
over a very long-time range, with only a weak tail corre-
sponding to the subradiant part of the signal.
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FIG. 2. �Color online� ��a� and �b�� The evolution of the time-
integrated signal for short delays without �a� and with �b� a biexci-

ton shift for ����̄ �no resonant dots in the ensemble�. Red solid
lines: V=2 meV and ��=1 meV; green dashed lines: V=2 meV
and ��=0.5 meV; blue dotted lines: V=0 meV and ��=1 meV.
��c� and �d�� As in �a� and �b�, respectively, but for �� comparable

with �̄. Red solid lines: V=2 meV and ��=3 meV; green dashed
line: V=2 meV and ��=5 meV; blue dotted lines: V=3 meV and
��=3 meV; and gray dash dotted line V=0 and ��=3 meV.
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FIG. 3. �Color online� Time-integrated FWM response. �a� De-
pendence on the coupling strength V for ��=3 meV. �b� Depen-
dence on the inhomogeneity of the energy mismatch for V
=5 meV.
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Since the decay rates �� depend on V /�=V / �V2+�2�1/2,
which varies over the ensemble due to the inhomogeneity of
�, they change from one DQD to another. In order to see
how this inhomogeneity effect influences the nonlinear opti-
cal response we plot the time-integrated FWM response for a
few values of �� in Fig. 3�b�. The influence of this parameter
is rather small and appears only for rather long times. The
major effect is some softening of the shoulder which marks
the transition from the dominating super-radiant contribution
to the subradiant tail. However, this happens only when ��

��.
Interestingly, as long as only the leading-order response is

considered, the biexciton shift appears only in the short-
living term F3. At longer times, this kind of coupling does
not affect the FWM response at all. Thus, there are no beats
from molecular biexcitons in the FWM response.

V. CONCLUSION

Our results show that the shape and decay rate of the
time-resolved FWM signal provide rich information on the
properties of the DQDs in the ensemble, including coupling
between the QDs. In the time-integrated signal for long delay
times, one observes a transition from the regime of indepen-
dent decay �with the usual decay rate� to super-radiant decay
�double rate� via intermediate cases of nonexponential decay.
This transition is driven by the interplay of the energy mis-
match between the QDs forming the DQD system and the
coupling between them and is only weakly affected by the
distribution of the energy mismatch. The super-radiance ef-
fect observed in the decay of the FWM response is strongly
stabilized by the coupling between the dots and can survive
even when the energy mismatch is many orders of magnitude
larger than the radiative linewidth.

Unlike ensembles of individual QDs, the DQD samples
show interesting and meaningful features also in the TI sig-
nal at short delays �several picoseconds�. In this range of
delay times, the signal has the form of oscillations which
result from optical beats between the radiation emitted from
different DQDs. The form and decay time of these oscilla-
tions depend on the presence of a resonant subensemble �a
subset of DQDs with matched transition energies� in the in-
homogeneous ensemble. If such subensemble is present, its
contribution dominates the short-delay response yielding a
direct access to the strength of interaction between the dots
forming the DQDs.

In our study, we assumed that the surface density of
DQDs in the ensemble is not very high and the distribution
of the transition energies is rather broad so that collective
effects on the level of the ensemble are absent. Including
such effects would require applying a more general
theory,31–33 as the DQDs are spaced by distances comparable
or larger than the emitted wavelength so that propagation and
retardation effects would come into play.
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APPENDIX: THIRD-ORDER RESPONSE:
APPROXIMATIONS

In this Appendix we give the full formulas for the com-
ponents of the third-order response and present the details of
the approximations that lead to Eqs. �20a�–�20c�. Substitut-
ing Eq. �17� into Eq. �6� one finds the FWM response signal
in the form of Eqs. �18� and �19� with

�1���� = ��
2 exp
 �2i�/� � ����2�ref

2

8�1 + �ref
2 �E

2 /�2� �
� exp
− ���� −

����t0 − ��
2�1 + �ref

2 �E
2 /�2�� ,

�A1a�

�2���� = �+�− exp
 �2i�/� � ����2�ref
2

8�1 + �ref
2 �E

2 /�2� �
� exp��2i�/���

� exp
− �� −
����t0 − ��

2�1 + �ref
2 �E

2 /�2�� , �A1b�

�3���� = − �� exp
 �2i�/� � �2 + �����2�ref
2

8�1 + �ref
2 �E

2 /�2� �
� exp
−

�ref
2 VB�VB � 2��
2��2 + �ref

2 �E
2� �

� exp
i
�2 + �����ref

2 VB

2�� + �ref
2 �E

2 /�� �
� exp
− i�VB � 2���/� −

iVB�t0 − ��
� + �ref

2 �E
2 /��

� exp
− �1 + ����� −
�2 + �����t0 − ��
2�1 + �ref

2 �E
2 /�2� � .

�A1c�

The values of the radiative decay rate � and the inhomoge-
neous ensemble broadening of the transition energies �E are
on the order of �eV and tens of meVs, respectively, while
the typical duration of a reference pulse is about 100 fs or
less. Based on these values, Eqs. �A1a�–�A1c� can be con-
siderably simplified.

In the first exponents in Eqs. �A1a� and �A1b�, one can
write �consistently with the approximation ��� /� used
throughout this paper�

�2i�/� � ����2�ref
2 � − 4�2�ref

2 /�2 � 4i�����ref
2 /� .

Moreover, typically ��ref�10−4 and ��ref /��0.1, hence the
imaginary part can be safely neglected. The same argument
holds for the first exponential term in Eq. �A1c� so that
in all three exponents this term can be replaced by
exp�−�1 /2��2�ref

2 / ��2+�ref
2 �E

2��.
Because of the Gaussian term in Eq. �19�, it is clear that
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the measured signal is of considerable magnitude only when
�t0−���� /�E, which reflects the “photon echo” nature of the
FWM response. Since �� /�E�1, the very last terms in Eqs.
�A1a�–�A1c�, proportional to ��t0−��, can be discarded. The

third exponential term in Eq. �A1c� is also negligible as
�ref��1 while �refVB /� is typically on the order of 0.1 �for a
biexciton shift of a few meV�. With these approximations
one arrives at the Eqs. �20a�–�20c�.
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